https://ogma.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Vimentin Phosphorylation Is Required for Normal Cell Division of Immature Astrocytes https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:45247 Wed 26 Oct 2022 20:03:45 AEDT ]]> The role of GFAP and vimentin in learning and memory https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:44249 GFAP-/-Vim-/-) exhibit increased post-traumatic synaptic plasticity and increased basal and post-traumatic hippocampal neurogenesis. Here we assessed the locomotor and exploratory behavior of GFAP-/-Vim-/- mice, their learning, memory and memory extinction, by using the open field, object recognition and Morris water maze tests, trace fear conditioning, and by recording reversal learning in IntelliCages. While the locomotion, exploratory behavior and learning of GFAP-/-Vim-/- mice, as assessed by object recognition, the Morris water maze, and trace fear conditioning tests, were comparable to wildtype mice, GFAP-/-Vim-/- mice showed more pronounced memory extinction when tested in IntelliCages, a finding compatible with the scenario of an increased rate of reorganization of the hippocampal circuitry.]]> Tue 11 Oct 2022 12:10:20 AEDT ]]>